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Recent work in adaptive importance sampling is applied to Markov chain models
for Monte Carlo simulations. When this technique is incorporated into the simulation
of physical processes, it can give orders-of-magnitude improvement in convergence
times relative to standard approaches. We review the related methodology and illus-
trate its application.
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1. BACKGROUND

Random-walk models have long been used by researchers for turbulent diffusion calcu-
lations. In this approach, the trajectories of particles or tagged fluid elements are tracked
as they evolve. Successful applications, especially in regard to particle dispersion in the
atmosphere, range from early efforts by Lamb [16] and Reid [22] and continue to more
recent work such as by Borgaset al. [6].

Much attention on the use of random-walk models has focused, understandably, on the
underlying theory (see van Dopet al. [29] and Wilson and Sawford [30] for reviews) and
on developing models that accurately represent physical behavior (e.g., Thomsen [26] and
Reynolds [23]). Perhaps partly as a consequence, less attention has been paid to compu-
tational issues. Because a drawback of these models is that a large number of trajectories
must be simulated in order to obtain the desired statistical accuracy in the results, simulation
efficiency is important.

To address this computational problem, efforts have been made to increase the time step
that can be used by assuming a homogeneous parameterization for turbulence [13] and by
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using a linear-skewed form of the Langevin equation to obtain an exact particle velocity
relation [19]. So-called particle puff models also have been adopted in various forms, such
as by Hurley [12] and de Haan and Rotach [8], to improve efficiency.

In this paper, we present an approach to accelerating convergence based on adaptive im-
portance sampling. This approach can be used alone or in conjunction with other techniques
to substantially improve simulation efficiency. It follows in the vein of recent radiation
transport work [5], where, as in turbulent dispersion, conducting controlled experiments is
expensive and computer simulation is widely used.

We overcome the need for simulating large numbers of particle trajectories that conform
to the model for the natural process by instead simulatingbiasedparticle trajectories—
trajectories that evolve according to stochastic processes that differ from that for the natural
model. These stochastic processes are defined using recent theoretical results in adaptive
learning algorithms. The novelty of the approach lies in its use of iterative curve fitting
in such a way as to produce exponentially convergent acceleration properties. (This phe-
nomenon is explained in Section 3.4.) Because the underlying methodology applies to a
large class of computational physics problems that can be modeled as transient Markov
chains, its applicability is not limited to specific Monte Carlo codes, such as those for
turbulent dispersion.

The bottom line is that uncertainties are greatly reduced. In the idealized examples pre-
sented here, simulation efficiency for estimating physical properties of interest is improved
by factors of tens to hundreds. To be sure, there are trade-offs involved, in that efficient
estimation of a property of interest may correspond to inefficient estimation of another
property, but these trade-offs are usually worthwhile.

In Section 2, background for the methodology is described. Illustrative examples are
presented in Sections 3 and 4, where we show significant improvement in convergence rates
relative to simulation of the natural process. Additional remarks are given in Section 5, and
mathematical details are contained in three appendices.

2. IMPORTANCE SAMPLING

Underpinning the methodology is importance sampling, an idea dating back some 50
years [14]. Of late, however, advances in adaptive importance sampling for Markov chains
offer the potential to greatly accelerate the convergence of stochastic particle dispersion
simulations. We begin by giving the mathematical foundation of importance sampling for
simple integrals, then extend the concepts to random-walk models, and finally discuss the
role of learning algorithms.

2.1. Simulation Estimates of Integrals

Simulation averages, such as an ensemble mean or a time-average mean, usually corre-
spond to some type of mathematical integration. In this context, importance sampling is
often useful (e.g., [24]). It helps to consider the problem of using simulation to estimate a
simple integral. Suppose thaty is a random variable which behaves according to probability
density functionf (y), and that it is of interest to estimate the average value of some function
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s(y), i.e., to estimate the integral

Ĩ =
∫

s(y) f (y) dy.

The straightforward approach to solving the problem via simulation involves generating a
set of N independent random variables{yi } according to the probability density function
f (y) and averaging the resulting “scores”{s(yi )}, obtaining the Monte Carlo estimate

Î f = 1

N

N∑
i=1

s(yi ). (1)

Here, the “hat” notation̂I is used to distinguish a simulation estimate from the theoretical
quantity Ĩ being estimated. When the sample sizeN is large enough to produce the desired
statistical accuracy, the problem is solved.

On occasion, however, the straightforward approach is computationally inefficient. If
the simulation of random variables from the probability densityf (y) is slow, or if the
simulated scores{s(yi )} are near zero for the most commonly observed{yi } values, then
much computation time is required. A way to avoid this circumstance is to choose another
probability density functiong(y) and rewrite the integral̃I of interest as

Ĩ =
∫

s(y) f (y) dy=
∫ {

s(y)
f (y)

g(y)

}
g(y) dy. (2)

Then, by simulating values{yi } independently from the probability density functiong(y),
the importance sampling estimate is

Î g = 1

N

N∑
i=1

{
s(yi )

f (yi )

g(yi )

}
. (3)

Loosely speaking, the importance sampling estimateÎ g takes the values{s(yi )} obtained
from the simulation usingg(y) and combines them using the weights{ f (yi )/g(yi )} in
order to adjust for the biased sampling of the{yi }. Under mild regularity conditions on
the importance distributiong(y) that preclude division by zero in Eq. (3), the resulting
estimates are statistically valid.

2.2. Zero-Variance Importance Sampling

The key to making importance sampling succeed is to choose a good importance distri-
butiong(y). Illustrating an idealized case, supposes(y) ≥ 0 and consider the importance
distribution g̃(y) = s(y) f (y)/ Ĩ . This choice ofg(y) tends to preferentially sample{yi }
values which emphasize parts of the space that are “important” to the integralĨ , in contrast
to ordinary simulation which produces{yi } values based on their prevalence in the natural
distribution described byf (y).

Using the probability density functioñg(y) = s(y) f (y)/ Ĩ for random number genera-
tion, each simulated random variableyi from g̃(y) contributes the score

s(yi )[ f (yi )/g̃(yi )] ≡ Ĩ
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to the importance sampling estimateÎ g in Eq. (3). That is, the simulation estimate gives
the desired answer with no simulation error, a phenomenon that may initially seem hard to
believe. This choice ofg(y) is known as thezero-variance solution.

To illustrate, consider using simulation to estimate the varianceσ 2 of a Gaussian random
variable having mean zero. The probability density function for this example is

f (y) = 1

σ
√

2π
e−y2/2σ 2

,

and the score function of interest is

s(y) = y2.

The integralĨ is simply the parameterσ 2, and thus the zero-variance solution is

g̃(y) = 1

σ 3
√

2π
y2e−y2/2σ 2

.

Figure 1 displays the difference betweenf (y) andg̃(y) for the caseσ 2= 19,715 (a value
to arise in later examples). The distributiong̃(y) highlights the values ofy most relevant to
the integration ofs(y).

Of course, construction of the zero-variance solutiong̃(y) = s(y) f (y)/ Ĩ requires knowl-
edge of the integral̃I , which is what we are trying to estimate in the first place. As such, the
theoretical zero-variance result may not seem to have much practical value. We show in later
sections, however, that learning algorithms based on approximations to the zero-variance
solution lead to dramatic efficiency gains.

FIG. 1. Solid curves denote the Gaussian probability density function and (scaled) score functions(y) = y2;
the dashed curve denotes the zero-variance solution.
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2.3. Random-Walk Models

The above discussion can be extended from simple random variablesy to the stochastic
processes{xn; n = 0, 1, 2, . . .} used in turbulent particle dispersion. The idea is that each
step of a random walk is simulated from a probability density function that differs from
its natural counterpart. That is, the direct simulation of a random walk from the model for
nature involves producing, at each step, one or more stochastic components that determine
how the walk will proceed.

The goal of importance sampling is to judiciously “bias” each step of the random walk to
produce particle trajectories that are important to the calculation at hand, thereby reducing
uncertainties relative to direct simulation. Although the general concept is by no means new,
its practical use has been inhibited by past emphasis on nonadaptive techniques tailored
to highly specific applications (such as those in radiation transport) and by assorted issues
discussed in Section 5.

More formally, particle movement is treated as a transient Markov chain. The state space
for the chain contains all of the information needed to generate each step of the random
walk and may include particle location, velocity, direction, and other aspects of interest
such as “real” time. The embedded multidimensional structure of the state space is not of
interest to this discussion however; thus, the state of the process at stepn is simply denoted
asxn.

Simulation of thenth step of the random walk is governed by the transition kernel for the
Markov chain, denotedp(xn−1, xn). In other words, the transition kernel is the probability
density function that formalizes, in a stochastic sense, the process of moving from statexn−1

at stepn− 1 to statexn at stepn. Computationally, the statexn is obtained by simulating
from p(xn−1, xn), and it follows that the probability density function for an entire random
walk {xn; n = 0, 1, . . . , τ } is the product of the densities for the multiple steps:

τ∏
n=1

p(xn−1, xn).

The purpose of most stochastic particle dispersion simulations is to understand aspects
of particle movement. In what follows, the quantity of interest is assumed to be a property
of an individual particle trajectory. One simple example of such a property is the theoretical
centroid of a particle at a specified stage of its random walk. Here, the term “theoretical”
refers to the statistical distribution of particle trajectories and can be viewed as being equal
to the limit (as the numberN of simulated trajectories goes to infinity) of the simulated
average.

The theoretical quantity of interest is expressed mathematically as the average of a score
which accumulates with each step of the random walk. Lets(xn−1, xn) denote the score
accumulated on stepn, and letτ denote the (possibly random) number of steps in the walk.
Then the accumulated score for a single random walk{xn} starting in statex0 and evolving
according to the natural transition kernelp(xn−1, xn) is

S(x0) =
τ∑

n=1

s(xn−1, xn).

The corresponding theoretical average with respect to the distribution of all trajectories
emanating fromx0 is denotedS̃(x0).
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For example, quantities of interest could include:

(a) The plume centroid at a specified stepñ. In this case, the score function iss(xn−1,

xn)= 0 for all n 6= ñ, ands(xñ−1, xñ) is the locatioǹ ñ of the particle trajectory at step̃n.
(b) The second moment of the plume at stepñ about a specified locatioǹ. Here, scores

s(xn−1, xn) = 0 for all n 6= ñ, ands(xñ−1, xñ) is the outer product(`ñ − `)(`ñ − `)T.
(c) The portion of released particles that enter a volumeV . Here, the score function is

s(xn−1, xn) = 1 if the particle arrives inV for the first time at stepn. All other scores are
zero. Note that, once obtained, this average score can be combined with the release rate and
converted to a concentration.

(d) The portion of released particles that are deposited on a surface areaA. Here, the
score function iss(xn−1, xn) = 1 if the particle is deposited onA at stepn. All other scores
are zero.

(e) The average elapsed time until an event of interest occurs (at which point the ran-
dom walk terminates). Here,s(xn−1, xn) = (1t)n, where(1t)n is the elapsed clock time
associated with thenth time step.

In this paper, we consider score functionss(xn−1, xn) that are one-dimensional and non-
negative. Cases where scores can be negative, such as for particle position, can often be
handled by adding an artificial constant to the score function (akin to a Celsius-to-Kelvin
temperature conversion).

The straightforward Monte Carlo approach involves generating random walks from state
x0 according to the transition kernelp(xn−1, xn) for the model of nature, obtaining an
accumulated scoreS(x0) for each random walk, and then averaging those accumulated
scores over the simulation. Averaging the scoresS(x0) from N trajectories originating
from x0 is the stochastic process analogue of Eq. (1) for Monte Carlo estimation of simple
integrals.

Improving on the status quo via importance sampling involves choosing a transition
kernelq(xn−1, xn) which differs from the natural kernelp(xn−1, xn) to bias the steps of the
simulated random walk. The accumulated score from a biased random walk for a single
particle takes the form

S(x0) =
τ∑

n=1

{
s(xn−1, xn)

∏n
i=1 p(xi−1, xi )∏n
i=1 q(xi−1, xi )

}
, (4)

where the ratio
∏

p(xi−1, xi )/
∏

q(xi−1, xi ) in Eq. (4) plays the role off (yi )/g(yi ) in
Eq. (3). By averaging scores in Eq. (4) fromN biased trajectories, the stochastic process
analogue of importance sampling for simple integrals is obtained. For some problems, such
as when interest lies only in the ultimate state of the process,s(xn−1, xn) is zero for all but
the final stepτ of the random walk and Eq. (4) simplifies considerably.

2.4. Learning Algorithms

Adaptive importance sampling is a technique for reducing uncertainties. In the context of
Section 2.1 regarding Monte Carlo estimation of simple integrals, the adaptive procedure
starts by selecting an initial importance distributiong(y). Ideally, g(y) should resemble
the zero-variance solution, to the extent that this can be done given the initial informa-
tion; alternatively, the probability densityf (y) for the model of nature can be used for
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the initial iteration if a better estimate is not available. Next, random variables{yi } are
simulated according to the initial density and the simulated results are used to improve the
importance distribution. Simulation then continues with the improved importance distri-
bution, producing additional data for further improvement, and so on. For an early exam-
ple of such a learning algorithm, based on histogram-type probability density functions,
see [17].

In the context of stochastic processes, less research has been done on adaptive methods
than for simple estimation of integrals. For stochastic processes, the goal of adaptive im-
portance sampling is to find a good importance sampling transition kernelq(xn−1, xn). The
general approach is the same as for simple integrals, namely, to start with an initial kernel
and then use simulation data to improve it.

In what follows, we use the fact that a zero-variance solution exists for transient Markov
chains with nonnegative score functionss(xn−1, xn). Letting S̃(x0) denote the theoret-
ical average score for a random walk beginning in statex0, the zero-variance kernel
is [1]

q̃S(xn−1, xn) = p(xn−1, xn)
s(xn−1, xn)+ S̃(xn)

S̃(xn−1)
. (5)

As with the zero-variance solution for simple integrals in Section 2.2, Eq. (5) requires
knowledge of the answer, here meaningS̃(x) for all statesx, which is nothing short of
omniscience.

Although the theoretical quantitỹS(x) is unknown in practical problems (indeed, the
lack of analytical solutions is a major reason for using simulation in the first place), it
is often possible to approximatẽS(x) with a parametric function ofx. Such approxima-
tion, over all statesx, amounts to a type of curve fitting, examples of which are given in
Sections 3 and 4. This curve fitting serves as the basis of a flexible, general approach to
accelerating convergence.

In idealized cases, where the parametric form of the approximating function contains
the exact form as a special case, recent theoretical work for discrete [15] and continuous
[1] state spaces has shown that a special class of adaptive learning algorithms converges
exponentiallyquickly to the solution. When compared with theN−1/2 rate of convergence for
ordinary simulation estimates, substantial gains in computational efficiency are achieved. An
example of exponential convergence is given in Section 3.4 for the problem of dispersion in
homogeneous turbulence; Booth [5] has achieved such convergence in an idealized radiation
transport example using less general methods.

To describe the learning algorithm, an initial simulation is carried out in which sev-
eral particle trajectories are generated based on an initial transition kernelq̂(0)(xn−1, xn).
As noted before, the natural transition kernelp(xn−1, xn) can serve as the initial kernel
q̂(0)(xn−1, xn) if need be. From the initial simulation data, an estimateŜ(x) of S̃(x) is ob-
tained via curve fitting. That estimate is then substituted into (5) and the result normalized to
integrate to 1, thus giving an updated importance sampling kernelq̂(1)S (xn−1, xn). Using the
updated kernel, more simulation data are obtained, which are used to improve the estimate
Ŝ(x). The improved estimate then defines a new importance sampling kernelq̂(2)S (xn−1, xn),
and so on.

Each iteration of the learning algorithm is, in principle, better than the one before. In
essence, the adaptive algorithm attempts to “learn” the theoretical averageS̃(x) in order
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to use it in a zero-variance simulation. Convergence of this algorithm often tends to be
exponential until the limiting performance is achieved, the performance being limited by
the ability of the assumed family of curves to describe the actual functionS̃(x) over states
x in the state space. At that point, considerable variance reduction per simulated trajectory
has usually occurred relative to simulation using the model of the natural process based on
the kernelp(xn−1, xn).

3. EXAMPLE: DISPERSION IN HOMOGENEOUS TURBULENCE

3.1. Introduction

To illustrate adaptive importance sampling, we consider virtually the simplest textbook
problem, namely, determining a one-dimensional plume spread for dispersion in homo-
geneous turbulence. Horizontal wind velocity is assumed constant in space and time, and
the domain in this example is of infinite extent, with no reflecting boundaries or other
complications. For this simple problem, the analytical solution forS̃(x) is known, making
convergence to zero variance possible.

The model we use for the natural stochastic process is as follows: At timet0 = 0, a particle
is released in the atmosphere at heightz0 having vertical velocityw0. Indexing time in units
of the simulated time step1t , the states of the Markov chain are denotedxt = (t, zt , wt ),
and the simulated natural process we consider evolves as:

(a) Update the time index tot + 1.
(b) Update the vertical velocity towt = φwt−1+ ηt , whereφ = 1− 1/TL > 0 with TL

the Lagrangian time scale, andηt a Gaussian random variable with mean zero and standard
deviationσw.

(c) Update the particle height tozt = zt−1+ [wt + wt−1]/2 .
(d) Terminate the particle trajectory if the event(s) of interest have occurred; otherwise,

return to (a) and continue.

The goal here is to determine the plume spread at time stepτ = 1000, where the plume
spread denotes the theoretical second moment of the vertical displacement(zτ − z0) of the
particle heightzτ at time stepτ from the release heightz0 at time step 0. For a horizontal
wind velocity of 5 m/s and time step 1 s, the time stepτ = 1000 corresponds to a downwind
distance of 5000 meters.

The straightforward approach to this problem involves simulating numerous trajectories
starting atx0 according to the model for the natural process, observing the final particle
heightzτ for each trajectory, accumulating statistics on the score(zτ − z0)

2, and continu-
ing the run until enough simulated trajectories have been generated to obtain the desired
accuracy. The standard deviation of the average score ofN trajectories decreases asN−1/2,
governing the rate of convergence.

3.2. The Learning Algorithm

To illustrate use of the learning algorithm for estimating the plume spread, knowledge is
needed regarding the theoretical averageS̃(xt ) = E[(zτ − z0)

2 | xt ], given that the process
is in statext at timet . It can be shown (see Appendix A) that the theoretical average for a
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particle in statext = (t, zt , wt ), wheret < τ , is

S̃(xt ) ≡ E[(zτ − z0)
2 | (t, zt , wt )]

=
[

zt − z0+ wt

(
1

2
+

τ−t−1∑
i=1

φi + 1

2
φτ−t

)]2

+
[
σ 2
w

τ−t−1∑
i=1

{
1

2
φτ−t−i +

τ−t−1∑
j=i

φ j−i

}2

+ σ 2
w

/
4

]
,

where again the simulated time step is 1 s andφ = 1− 1/TL whereTL is the Lagrangian
time scale. Summing the geometric series above and collecting terms in the state space
variables(t, zt , wt ) of xt gives the relation

S̃(xt ) = β0+ β1t + β2(1/φ)
τ−t + β3(1/φ

2)τ−t + β4z2
t + β5w

2
t + β6ztwt

+β7ztwt (1/φ)
τ−t + β8w

2
t (1/φ)

τ−t + β9w
2
t (1/φ

2)τ−t , (6)

where the curve-fitting parameters{β j } depend on specifics of the problem, such asσw. If
S̃(xt ) in Eq. (6) were substituted into the zero-variance kernel in Eq. (5), a single particle
trajectory from the biased random walk starting at any statex would produce the solution
S̃(x) = E[(zτ − z0)

2 | x] without error.
To illustrate the adaptive procedure which learnsS̃(x), suppose that the parameters{β j }

in Eq. (6) are treated as unknowns to be learned from simulation data. Knowledge of the
solution to this level of detail is unrealistic in practical applications, but the point here is to
demonstrate the performance of the algorithm under ideal conditions.

In order to learn the theoretical averageS̃(x) for all statesx, particles are released from a
number of different initial states(t, zt , wt ). Even if interest (nominally) lies only iñS(x0) for
a single initial statex0, it is necessary to simulate trajectories originating from many states to
do the curve fitting required to bias the random walks. Let the setD = {x(1), x(2), . . . , x(d)},
called thedesign, denoted states from which particles are released. That is, each design
point x(i ) = (t (i ), z(i ), w(i )) denotes a specific state from which a trajectory is initiated and
a score obtained.

For this example, we choose a design havingd = 750 initial states, where the design has
a Cartesian product structure with

t ∈ {0 s, 50 s, 100 s, 150 s, 200 s, 250 s, 300 s, 350 s, 400 s, 450 s, 500 s, 550 s, 600s,

650 s, 700 s, 750 s, 800 s, 850 s, 900 s, 910 s, 920 s, 930 s, 940 s, 950 s, 960 s, 970 s,

980 s, 990 s, 995 s, 998 s},
z ∈ {z0, z0± 200 m, z0± 400 m}, and

w ∈ {0 m/s,±1 m/s,±2 m/s}.

That is, all 30× 5× 5= 750 combinations of the above 30 time points, 5 particle release
heights, and 5 vertical velocities are used for the initial particle release conditions. This
design consists of somewhat regularly spaced points on a three-dimensional lattice and
is chosen because it covers the space of particle trajectories reasonably well and devotes
increasing attention to the more important later time points (recall that the final time step is
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atτ = 1000 s). Through judicious choice of design points, the right amounts of information
can be obtained from all relevant regions of the state space, as some regions are more crucial
to efficient calculation than are others.

In the first iteration of the algorithm, 25 trajectories are simulated from each state in
the designD using nature’s transition kernelp(xt−1, xt ). The 25× 750 simulated scores
are then used to estimate the functionS̃(xt ) through a least-squares curve fitting (see
Appendix B for details). Lettingz(i )τ denote the height at timeτ of a particle released
from thei th design pointx(i ), the expected value of the score(z(i )τ − z0)

2 for that particle’s
trajectory is

E
[(

z(i )τ − z0
)2] ≡ S̃

(
x(i )
) = 9∑

j=0

β j bj
(
x(i )
)
,

where the{bj (·)} are the basis functions of the regression model and are given in Eq. (6).
Using the simulation results, estimated parameters{β̂ j } are obtained.

The estimateŜ(xt ) of S̃(xt ), where both are viewed as functions ofxt , is obtained by
inserting the least-squares estimates{β̂ j } into the above, giving

Ŝ(xt ) =
9∑

j=0

β̂ j bj (xt ). (7)

Upon substituting this estimated importance functionŜ(xt ) for S̃(xt ) in Eq. (5) and normal-
izing, an approximate zero-variance kernelq̂S(xt−1, xt ) is obtained for the next iteration of
the learning algorithm. (Note that occasionally, it can happen that the fitted curveŜ(xt ) ≤ 0
for somext ; this situation is discussed in Appendix C.)

Subsequent iterations of the adaptive process, following thek = 1st, have the form:

(a) Substitute the estimated importance functionŜ(x) into (5) and normalize to obtain
the importance sampling kernelq̂(k−1)

S (xt−1, xt ).
(b) Simulate 25 particle trajectories originating from each of thed states{x(i )} in the

designD and using the transition kernelq̂(k−1)
S (xt−1, xt ).

(c) Use least-squares regression of the simulation data to estimate the parameters{β j }
to update the estimatêS(x) as indicated in Eq. (7).

(d) Update the iteration tok = k+ 1.

3.3. Particle Splitting

Before giving the results for the example, we digress to describe a simulation trick known
as particle splitting. Particle splitting is a method for reducing uncertainty that complements
importance sampling (e.g., Hammersley and Handscomb [9]) and is effective when used in
the examples of this paper.

To understand the concept, return to the setting of Section 2.1 and Monte Carlo for simple
integrals. The importance sampling estimate (3),

Î g = 1

N

N∑
i=1

{
s(yi )

f (yi )

g(yi )

}
,
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combines values{s(yi )} with weights{ f (yi )/g(yi )}. The average weight, with respect to
the simulation distributiong(y), is equal to 1. But in the event that a few weights were
to dominate all others, the estimateÎ g would be dominated by the few scores from the
corresponding random walks, largely ignoring the information in the other random walks.
Such a situation can lead to unstable estimates.

This situation is remedied by particle splitting. For random walk models, each particle
trajectory score (4) has the form

S(x0) =
τ∑

n=1

{
s(xn−1, xn)

∏n
i=1 p(xi−1, xi )∏n
i=1 q(xi−1, xi )

}
,

where the weight at stepn is the ratio of the probability density function for the natural
process to that for the importance sampled process,∏n

i=1 p(xi−1, xi )∏n
i=1 q(xi−1, xi )

.

This weight can be monitored as the particle trajectory evolves and, if it becomes too large,
the particle is “split.”

Splitting is not a physical reality, but instead it is a statistical device that prevents desta-
bilization of the estimate. If, after stepn of the random walk, a particle weight becomes
too large, the particle is replaced byk “subparticles” at statexn, where each subparticle has
weight 1/k times the weight of the original particle. Upon independently simulating each
subparticle from statexn to the conclusion of its random walk, the subparticle scores are
added and used in place of the score that would have been obtained for the unsplit original
particle.

In the examples that follow, particles are split whenever their weight exceeds 2.0, the
numberk of subparticles being just large enough so that each subparticle weight is less
than 2.0, which tends to split particles during the early portions of their trajectories. Note
that there exists the possibility that the subparticles may themselves be split at subsequent
time steps.

3.4. Numerical Results

Returning to the plume spread example, results are summarized in Fig. 2 for simulating
trajectories according to the model for the natural process and for simulating biased trajec-
tories using the adaptive approach in conjunction with particle splitting and the theoretical
functional form (6) ofS̃(x). For both approaches, we use constant Lagrangian time scale
TL = 10 s, standard deviationσw = 0.1 m/s, and initial vertical velocityw0 = 0 m/s. The
plotted curves display simulation accuracy relative to the known plume spread as a function
of central processing unit (CPU) time, where results are averaged over 50 runs of each
approach. The termrun refers to simulating natural trajectories fromx0 = (0, z0, 0) for
1000 time steps each, continuing to simulate trajectories for a total of 2000 CPU seconds
(for the standard approach), and refers to simulating successive iterations of the learning
algorithm for the same amount of time (for the adaptive approach).

Upon comparing the two approaches, it is seen that as the algorithm learns the parameters
{β j }, scores from simulated random walks fromx0 for the adaptive procedure converge to
the known plume spread̃S(x0) = 19715 m2 exactly (well, to machine precision) and do so
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FIG. 2. Log10 simulation error as a function of CPU time for the plume spread example, for simulation of
the model for the natural process (solid curve) and for simulation of the adaptive zero-variance process (dashed
curve). The dashed curve levels off once machine precision for the calculation is reached.

in an amount of CPU time that results in only modest accuracy for the standard approach.
As shown in Fig. 2, the log10 difference betweeñS(x0) and the simulation estimate from
the adaptive approach decreases to machine precision almost linearly as a function of
computation time. This behavior is calledexponential convergence.

As is apparent, simulating a biased particle trajectory requires more computational work
than does simulating a natural trajectory, especially for models like this one where producing
a natural trajectory is simple. The additional CPU time per simulated trajectory is more
than offset, however, by the need for far fewer trajectories and hence leads to the substantial
efficiency gain.

Typical particle trajectories fromx0 = (0, z0, 0) for the natural process (Fig. 3) and for
the zero-variance process (Fig. 4) illustrate the difference between the two approaches. The
set of possible trajectories for random walks is the same in each case, but the probability
distributions on the trajectories are markedly different. Vertical displacementszτ − z0 for
the natural and zero-variance processes resemble, not surprisingly, random samples from
the idealized distributions in Fig. 1.

3.5. Use of Approximating Models

We now consider a continuation of the above problem, intended to show the effects
of imperfect knowledge. That is, suppose the theoretical form ofS̃(xt ) were not known.
Instead, suppose that enough were understood aboutS̃(xt ), from subject matter knowledge
and/or from initial simulation data, to describe its general features in terms of a parametric
model. For example, instead of using the theoretical functional form (6) for biasing the



ACCELERATING CONVERGENCE 243

FIG. 3. Random sample of natural trajectories for the plume spread example.

FIG. 4. Random sample of zero-variance biased trajectories for the plume spread example.
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random walks, consider instead using a quadratic approximation

S∗β∗(xt ) = β∗0 + β∗1 t + β∗2zt + β∗3wt + β∗4 t2+ β∗5z2
t + β∗6w2

t

+ β∗7 tzt + β∗8 twt + β∗9ztwt , (8)

whereβ∗ = {β∗j } is a vector of curve-fitting parameters to be determined using simulation
data. Because the plume spreadS̃(xt ) is a well-behaved function of the state space variables
(t, zt , wt ), the model (8) provides a reasonable approximation over the range ofxt that
matters.

Generally speaking (e.g., [31]), the two objectives in multivariate importance sampling
are reduced variance and ease of simulation. Relative to choosing a modelS∗β∗(xt ) to guide
biased random walks, these two objectives imply

(a) It is vital that, for a “good” parameter vectorβ∗, the approximating functionS∗β∗(xt )

resembles̃S(xt ) as a function ofxt , so that the biased random walk has scores with variance
close to zero, and

(b) the functional form ofS∗β∗(xt ) is such that biased random walks using approximate
zero-variance kernel̂qS(xt−1, xt ) can be simulated in minimal CPU time.

In this example, these objectives are met.
Although the second-order response surface approximation (8) is not formally correct

in a theoretical sense, the adaptive learning algorithm can be implemented as if it were.
To illustrate, consider repeating the approach in the previous section. That is, in the first
iteration of the algorithm, 25 particles are released from each of the 750 design points in
D. Trajectories evolve according to the natural process. The simulated plume spreads at
τ = 1000 time steps are used to obtain the best-fitting approximation of the formS∗β∗(xt ).
Here, the term “best” again means that the parameter vectorβ∗ definingS∗β∗(xt ) is optimal
in a least-squares sense.

The estimateS∗β∗(xt ) is substituted for̃S(xt ) in Eq. (5) and then normalized to define the
transition kernel̂q(1)S (xt−1, xt ) for the next iteration of the algorithm. Then, 25 trajectories
again are simulated from each of the 750 design points{x(i )}, this time using the updated
kernel. The resulting simulation data are used to improve the estimated parameters{β∗j }
through another curve fitting, the improved parameters in turn are used to improve the
estimated importance function, and so on.

Because the model (8) is only approximate, convergence to zero variance is not possible.
Further, once the limiting performance of the model has been learned, there is no benefit to
additional adaptation. At that point,S̃(x0) is estimated by averaging results from trajectories
originating fromx0, using the transition kernel corresponding to the limiting performance.
Iterations of the learning algorithm are terminated upon stabilization of the sum of squares
SSD for the designD,

SSD =
∑

x(i )∈D

[
s̄
(
x(i )
)− S∗β∗(x

(i )
)]2

, (9)

wheres̄(x(i )) denotes the average of the 25 replicated scoresS(x(i )) from biased trajectories
sourced from thei th design pointx(i ) and the sum is taken over alld= 750 design points.
When the moving average (over three consecutive iterations of the algorithm) ofSSD

increases, the learning is discontinued. At that point, multiple random walks fromx0=
(0, z0, 0) are simulated independently using the most recent transition kernelq̂S(xt−1, xt ).
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FIG. 5. Log10 simulation error as a function of CPU time for the plume spread example, for simulation of the
model for the natural process (solid curve) and for simulation of the adaptive approximate zero-variance process
(dashed curve).

The mean and standard deviation of the scores then give the estimated plume spread and
its uncertainty.

Results are displayed in Fig. 5, which summarizes 50 runs (where each run consists of
at least 2000 CPU seconds of simulating trajectories) for the adaptive approach and for the
approach simulating the natural process. The learning algorithm requires roughly 500 s, on
the average, to learn parameter values, during which time its estimatesŜ(x0) of S̃(x0) have
comparatively large variability. And upon learning, generating a biased trajectory takes
roughly 6 times more CPU time than generating a natural trajectory.

The acceleration in convergence, however, is substantial. Note from Fig. 5 that the dif-
ference in log10 error between the adaptive approach and the simulation of the model for
the natural process at a CPU time of 2000 s is approximately equal to 0.83, averaged over
the 50 runs for each approach. This difference is equivalent to a factor of 100.83 ≈ 6.7
decrease in absolute error for the adaptive approach. Because of theN−1/2 behavior of
the standard deviation, this means that the model for the natural process would have to be
simulated roughly 6.72 ≈ 45 times longer in order to produce enough trajectories to match
this 6.7-fold improvement in accuracy.

Like most iterative algorithms, convergence of adaptive learning is accelerated through
the use of good starting values. That is, instead of using the natural process as the basis for
the first iteration of the algorithm, preliminary estimates of the parameters{β∗j } could, if
available, be used to define the transition kernel for the initial iteration. Such preliminary
estimates can sometimes be extrapolated from solutions to similar problems. In other cases,
simulation codes of “lower resolution” could provide preliminary estimates. If starting
values for the learning algorithm provided a reasonable facsimile ofS̃(xt ), biased trajectories
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would give more accurate results than would natural trajectories in the first iteration and
would further accelerate convergence.

As an example of this type of approach, Turner and Larsen [27] used deterministic
methods for a neutron transport application to solve a discretized version of the actual
(continuous) problem, doing so with less computational work than analog Monte Carlo
would have entailed. Then, using their solution to the discretized case, they defined ap-
proximate zero-variance biasing parameters to guide a nonadaptive Monte Carlo for the
continuous problem, thereby coupling the advantages of deterministic and Monte Carlo
methods in the same analysis. Such coupling could similarly help define biasing parameters
for the initial iteration for adaptive Monte Carlo.

4. EXAMPLE: REFLECTING BOUNDARIES AND PARTICLE DEPOSITION

4.1. Introduction

Adaptive importance sampling offers its greatest benefits in the study of rare-event
behavior—events such as a particle being deposited on a small surface areaA, or pass-
ing through a small volumeV , or traveling an unusually great distance from its release
point, and so on. The straightforward approach to the rare-event problem involves simu-
lating numerous natural trajectories, selecting from them the few that are “rare” and then
examining the behavior of the events in that subset. While such an approach has the ad-
vantage that simulating a large number of natural trajectories guarantees that the subset
of rare events has the correct statistical properties, there is an obvious drawback in that
much simulation effort is wasted. Importance sampling provides a method to preferentially
simulate uncommon trajectories and reweight the results; see, e.g., [3, 10, 18, and 28] for
discussions of nonadaptive importance sampling.

Consider a generalization of the previous example, intended to illustrate rare-event be-
havior relevant to dispersion of heavy particles. Such issues arise in problems related to
migration of airborne pollutants, to cross-pollination of agricultural crops, to resuspension
of aerosols, to aspects of chemical/biological warfare, and to other applications. In this
example, the goal is to estimate the probability that a pollen particle travels a great distance
without being deposited on the ground. When such a rare-event probability is coupled with
the total number of released particles, deposition fluxes can be obtained.

Specifically, we assume that a pollen particle is released from a point source at height
z0 = 5 m at timet = 0 having initial vertical velocityw0 = 0 m/s. The particle is subject
to a downward drift ofδ = 0.5 m/s; this drift is consistent with values for certain pollen
reported by Sehmel [25]. The ground, represented by the planez= 0, acts as a partially
reflecting lower boundary. That is, if the heightzt of a trajectory drops below 0, the particle is
deposited on the ground with a certain probabilityπ and is reflected upward with probability
1− π . For simplicity, the horizontal wind velocity is assumed constant in time and space,
so that the downwind distance is just a multiple of the number of time steps.

Letting other aspects of the simulation be as before, the simulated natural process evolves
as follows:

(a) Update the time tot + 1.
(b) Update the vertical velocity towt = φwt−1+ ηt , whereφ = 1− 1/TL > 0 with TL

the Lagrangian time scale, andηt a Gaussian random variable with mean zero and standard
deviationσw.
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(c) Update the particle height tozt = zt−1+ [wt + wt−1]/2− δ.
(d) If zt < 0, the particle is deposited on the ground with probabilityπ ; if it is not

deposited, then setzt = |zt | and setwt = |wt + δ|, thereby ensuring thatzt ≥ 0 andwt ≥ 0
after reflection.

(e) Terminate the trajectory if the particle has been deposited on the ground or if the time
stept > 1000; otherwise, return to (a) and continue.

In this example, we use deposition probabilityπ = 0.75 for each reflection in (d).
For these parameter values, most particles are deposited on the ground well in advance

of the 1000th simulated time step, and the probability that a particle is airborne after 1000
time steps is approximately 5× 10−5. For more realistic problems, where particles move in
a three-dimensional space, similarly small probabilities can occur easily. As noted above,
estimation of such rare-event probabilities via simulation of the natural process is inefficient.

4.2. Survival Biasing

For problems involving particle deposition, a useful simulation trick is survival biasing,
also known asimplicit capture[4] in radiation transport. To illustrate the concept, recall
from the discussion of particle splitting that each trajectory score (4) has the form

S(x0) =
τ∑

t=1

{
s(xt−1, xt )

∏t
i=1 p(xi−1, xi )∏t
i=1 q(xi−1, xi )

}
,

and the particle weight at time stept is∏t
i=1 p(xi−1, xi )∏t
i=1 q(xi−1, xi )

.

When a simulated particle reaches the ground during time stept < 1000, there are two
possibilities: either it is deposited with probabilityπ (and contributes a zero score) or it
is reflected with probability 1− π (and contributes the score that it would receive upon
completion of the remainder of its random walk). Allowing particles to be deposited before
time stepτ = 1000 shares the same weakness as does simulation of the natural process,
namely, that much computation is wasted in generating trajectories that do not produce the
rare event of interest.

With survival biasing, whenever a particle reaches the ground before time stepτ = 1000,
it is alwaysreflected. To correct for the particle never being deposited, the particle weight is
reduced (through multiplication by 1− π ) upon each reflection. In a sense, this is equivalent
to having a 1− π fraction of the particle be reflected at the boundary. The resulting estimate
is statistically unbiased as a result of this weight reduction. Note that some trajectories could
involve survival biasing at several individual time steps if a particle repeatedly impacts the
ground surface.

On the final time step, analytical results are used in place of simulated ones. That is,
instead of simulating theτ th time step of the trajectory and obtainings(xτ−1, xτ ) = 1 or
0, depending on whether the particle is airborne following theτ th time step, it is simple to
compute the one-step probability that the particle is airborne given its height and vertical
velocity. The value of the probability is then used ass(xτ−1, xτ ) for the trajectory, in place
of the 1 or 0 that would otherwise be used. It is not hard to show that variability is reduced
by this technique.
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4.3. Particle Deposition and Adaptive Importance Sampling

The goal of importance sampling for the deposition problem is to preferentially simulate
trajectories having a high probability of being airborne following time stepτ = 1000 (“high”
relative to the population of trajectories resulting from simulating from the model for the
natural process). This might seem difficult, because unlike the plume spread example in
Section 3.1, there is no simple formula for the eventual deposition probability owing to the
partially reflecting boundaryz= 0. Fortunately, good results can be obtained for rare-event
probabilities without a formally correct model for the functional relation between deposition
probability and state space variables.

Particle trajectories having high probability of being airborne following time stepτ =
1000 tend to have heightszt well above zero. One way to preferentially generate such
trajectories that gives substantial improvement over the (grossly inefficient) simulation of
the natural process is to model the log probabilityS̃(xt ) that a particle in statext will be
airborne afterτ − t additional time steps using the quadratic approximation as in Eq. (8),

ln S̃(xt ) ≈ ln S∗β∗(xt )

= β∗0 + β∗1 t + β∗2zt + β∗3wt + β∗4 t2+ β∗5z2
t + β∗6w2

t + β∗7 tzt + β∗8 twt + β∗9ztwt ,

where, as before, the{β∗j } are curve-fitting parameters to be estimated. As in Section 3.5,
this second-order response surface is intended to roughly describe the theoretical average
of interest as a function ofxt .

Given this approximate model, the approach is the same as for the plume spread example.
Trajectories are simulated starting from a set of design points; a curve fitting is carried out
to estimate the parameters{β∗j }; the resulting parameter estimates are used to update the
importance sampling, which is then used as the basis for simulating still more trajectories;
and so on.

The differences between the rare-event example and plume spread example are such that
a simpler design provides good results. A useful designD∗ for the rare-event example has
a Cartesian product structure with

t ∈ {0 s, 250 s, 500 s, 750 s, 995 s},
z ∈ {1.33 m, 5 m, 15 m, 45 m, 135 m}, and

w ∈ {−1 m/s, 0 m/s, 1 m/s, 2 m/s, 3 m/s}.

That is, all 125 combinations of the 5 time points, 5 heights, and 5 vertical velocities are
used as initial release conditions, with 50 simulated trajectories per design point. Recall
that the release height of interest isz0 = 5 m, so that the above design points roughly cover
the set of plausible trajectories of particles being airborne after 1000 time steps. As in the
plume spread example, more complex designs coupled with more complex approximations
S∗β∗(x) to the theoretical functioñS(x) would provide slightly better results.

The first iteration of the adaptive algorithm involves simulation of the model for the
natural process in conjunction with survival biasing. Adapting as before (by monitoring the
moving average of the sum of squaresSSD∗ for the designD∗) leads to the performance
summarized in Fig. 6. As in the plume spread example, 50 runs of the natural process and
of the adaptive approach with survival biasing and particle splitting are simulated, each run
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FIG. 6. Log10 simulation error as a function of CPU time for the pollen deposition example, for simulation
of the model for the natural process (solid curve) and for simulation of the adaptive approximate zero-variance
process (dashed curve).

for a CPU time exceeding 500 s. The learning stage of the adaptive algorithm takes roughly
100 s, on the average. At that point, simulation of a biased trajectory requires a factor of 35
more CPU time than does simulation of a natural particle trajectory (recall that most natural
trajectories involve particles depositing on the ground after relatively few time steps).

As with most rare-event examples, however, the inherent inefficiency of simulating rare
events by subselecting from a set of natural events is such that efficiency gain is considerable.
After a CPU time of 500 s, for example, the difference in absolute error is 101.23 ≈ 17, so
that the natural process would need to be run a factor of 172 ≈ 289 times longer to simulate
enough natural trajectories to achieve the same accuracy.

Use of the importance sampling schemeS∗β∗(x) computed in the above scenario also
produces significant efficiency gains when used for biasing random walks in scenarios
“near” the one considered here. That is, for scenarios whose defining parameters are close
to the ones above (those values beingσw = 0.1 m/s,δ = 0.5 m, andπ = 0.75, for example)
or for scenarios whose events of interest are of similar character (such as the event that
a particle travelsτ = 800 or 1200 time steps from its release point). By preferentially
simulating long particle trajectories and reweighting the results, quantities of interest are
determined far more efficiently.

5. CAVEATS

Previous sections have emphasized the role of adaptive importance sampling using
approximate zero-variance kernels in accelerating convergence of Monte Carlo particle
dispersion simulations. The drawbacks of this approach also warrant mention. The first
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drawback is that implementation of the approach is still in its infancy. Similar to nonadap-
tive importance sampling, existing adaptive methods “often require users to have a fair
degree of experience, or to employ a significant amount of trial and error, to obtain accu-
rate efficient results” [27, p. 22]. The need for such knowledge has, perhaps, inhibited the
development of adaptive algorithms that transcend specific applications, such as those in
radiation transport.

Part of the novelty of the approach described herein is that its biasing parameters are
obtained through a simple curve fitting of simulation data, a subject that largely tran-
scends specific applications. This novelty, however, comes with a lack of experience in
dealing with real problems. The examples of the previous sections, though simple in
many regards, reflect the state of the art in use of the adaptive zero-variance approach
to random-walk models. Experience with more realistic problems can only be gained with
time.

A second drawback is that, in most simulations, interest lies in multiple physical proper-
ties. As may be apparent from Figs. 1 and 4, a good importance sampling for one quantity
of interestS̃(x0) at one initial statex0 is achieved by one reweighting of the natural dis-
tribution for particle trajectories, but such a reweighting can lead to efficiency losses for
other quantitiesS†(x†) at other statesx†, for which different reweightings are needed. One
way to deal with this problem is to simply repeat the learning algorithm for each property
of interest. Another way is to hedge against poor estimation through the mixing of impor-
tance distributions (as discussed by Hesterberg [11] and by Raghavan and Cox [21] with
respect to simulation approximation of simple integrals). Such mixing provides a balance
across multiple quantities of interest. Either alternative is generally superior to the standard
approach of simulating the model for the natural process.

The third drawback is that efficient implementation of the approach here requires knowl-
edge beyond that related to direct simulation of the physical process of interest. Computer
programming skills, including familiarity with simulation tricks such as splitting, roulette,
and survival biasing, are helpful for most problems. And because of the curve-fitting aspect
of adaptive importance sampling based on approximate zero-variance kernels, it is essential
to have expertise in statistics in

(a) experimental design to select good designsD from which to originate particle tra-
jectories;

(b) multiple regression and curve fitting to identify modelsS∗β∗(xt ) giving good approx-
imations to simulation data, an issue that takes on greater significance in applications that
entail complex models having a large number of parameters; and

(c) multivariate random number generation to simulate steps for biased random walks
from approximate zero-variance kernels of the form (5), where again the challenges become
greater in high-dimensional settings.

In cases where results from simulation of the model for the natural process are sufficiently
fast and accurate, the need for such skills diminishes and finding the expertise to accelerate
convergence may not be worthwhile.

6. CONCLUSION

Caveats notwithstanding, the prospect of one or more orders-of-magnitude reduction in
convergence times for turbulent diffusion calculations is worth pursuing. For simulation
codes that are run often (e.g., with different input values), whose estimates converge slowly,
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or from which results of high precision are required, the potential benefits of adaptive
importance sampling are considerable.

APPENDIX A

Dispersion in Homogeneous Turbulence

In this section, the stochastic process for homogeneous turbulence is reviewed and the
plume spread calculations for biased random walks are illustrated. Begin with a particle at
heightz0 with vertical velocityw0 at timet = 0. In what follows, the time step is denoted
1t , though the examples herein use1t = 1 s for simplicity, so that time is indexed in units
of the simulated time step. As noted in Section 3.1, the stochastic simulation for the natural
process updates the heightzt of the particle as follows:

(a) update the time tot +1t ;
(b) update the vertical velocity towt = φwt−1+ ηt , whereφ = 1−1t/TL > 0 with

TL the Lagrangian time scale andηt a Gaussian random variable with mean zero and standard
deviationσw;

(c) update the particle height tozt = zt−1 + 1t [wt + wt−1]/2; and
(d) if t < τ , return to (a).

Here, the vertical velocitywt and particle heightzt behave according to standard time series
models [7].

Of interest is the vertical plume spread̃S(t0, z0, w0) at future time stepτ given the
initial conditionsx0 = (t0, z0, w0), formally equal to the expected valueE[(zτ − z0)

2 | x0].
Because of the idealized character of the problem, the plume spread can be calculated
analytically. That is, the recursive relations (b) and (c) lead to

wt = φtw0+
t∑

i=1

φt−i ηi

and the conditional relation

zτ | (t0 = 0, z0, w0) = z0+1t

[
w0/2+

τ−1∑
t=1

wt + wτ/2
]

= z0+1tw0

(
1

2
+

τ−1∑
i=1

φi + 1

2
φT

)

+1t
τ−1∑
i=1

ηi

{
1

2
φτ−i +

τ−1∑
j=i

φ j−i

}
+ 1t

2
ητ ,

which imply that the vertical plume spread is

S̃(t0 = 0, z0, w0) ≡ E[(zτ − z0)
2 | x0]

=
(1t)2(w0)

2

(
1

2
+

τ−1∑
i=1

φi + 1

2
φτ

)2


+
(1t)2σ 2

w

τ−1∑
i=1

{
1

2
φτ−i +

τ−1∑
j=i

φ j−i

}2

+ (1t)2σ 2
w

/
4

.
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Using a similar derivation, a random walk in statext = (t, zt , wt ), wheret ≤ τ − 2,
proceeds forτ − t steps until timeτ , and so conditional on the particle being in statext

zτ | (t, zt , wt ) = zt +1twt

(
1

2
+

τ−t−1∑
i=1

φi + 1

2
φτ−t

)

+1t
τ−1∑

i=t+1

ηi

{
1

2
φτ−i +

τ−1∑
j=i

φ j−i

}
+ 1t

2
ητ ,

leading to plume spread

S̃(t, zt , wt ) ≡ E[(zτ − z0)
2 | (t, zt , wt )]

=
[

zt − z0+ (1twt )

(
1

2
+

τ−t−1∑
i=1

φi + 1

2
φτ−t

)]2

+
(1t)2σ 2

w

τ−t−1∑
i=1

{
1

2
φτ−t−i +

τ−t−1∑
j=i

φ j−i

}2

+ (1t)2σ 2
w

/
4

 .
Simplifying the summations using

τ−t−1∑
i=1

φt = (φ − φτ−t )/(1− φ),

and collecting terms in(t, zt , wt ), Eq. (6) as cited in Section 3.1 is obtained.

APPENDIX B

Estimating S̃(x) from Simulation Data

At the heart of the learning algorithm is the use of simulated data from biased random
walks in estimating the theoretical quantityS̃(x) as a function ofx. In this section, the
process of estimating̃S(x) is described.

For the designD = {x(1), x(2), . . . , x(d)}, let s̄(x(i )) denote the average score of the repli-
cated trajectories having initial statex(i ). The parameters{β∗j } defining the modelS∗β∗(x)
for S̃(x) can be chosen to minimize the sum of squares

SSD =
∑

x(i )∈D

[
s̄
(
x(i )
)− S∗β∗

(
x(i )
)]2

,

where the sum is taken over alld design points. For models linear in their parameters such as
(6) and (8), a closed-form solution exists for the least-squares estimates, standard software
can be used, and estimates are obtained quickly. For nonlinear models, a simplex search
procedure [20] or derivative-based optimization routines, such as Levenberg-Marquardt [2],
can be used for the optimization, although usually at considerable cost in CPU time relative
to linear models. Upon substitution of the parameter estimates into the functional form for
S̃(x), an estimated function̂S(x) is obtained from each iteration of the learning algorithm.
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Upon reaching the limiting accuracy of the model (this is reflected by equilibration in the
plot of the sum of squaresSSD against iteration number), the estimated score functionŜ(x)
is obtained. For the results herein, the adaptation is terminated once the moving average of
SSD over three consecutive iterations of the algorithm increases, the rationale being that
the algorithm has learned nearly all it can about the approximating model by that point.
Additional computation should then be devoted to simulating trajectories for determination
of quantities of interest. Parameter estimates for the importance sampling kernel to be used
for final estimates are obtained from the final iteration of the adaptation.

APPENDIX C

Simulating Biased Random Walks

In this section, simulation from biased random walks is summarized. Computational
aspects of this process can be nontrivial at times, but the details matter: given the number of
particle trajectories involved in most simulations and the number of time steps per trajectory,
any computational inefficiencies in generating random-walk steps from the transition kernel
q̂S(xt−1, xt ) will accumulate.

As noted in Section 2.2, forp(xt−1, xt ) denoting the natural transition probability density
from xt−1 to xt , the estimated zero-variance transition kernel has the form

q̂S(xt−1, xt ) ∝ p(xt−1, xt )
s(xt−1, xt )+ Ŝ(xt )

Ŝ(xt−1)
.

The existence of this functional form does not necessarily imply that it is easy to simulate
random walks from it.

In the rare-event example, such simulation is straightforward. Thet th time step in-
volves simulation of the vertical velocitywt from the biased probability density function
q̂S(xt−1, xt ). Recall that the approximating model forS̃(xt ) is

ln S∗β∗(xt ) = β∗0 + β∗1 t + β∗2zt + β∗3wt + β∗4 t2+ β∗5z2
t + β∗6w2

t + β∗7 tzt + β∗8 twt + β∗9ztwt

= β∗6w2
t + (β∗3 + β∗8 t + β∗9zt )wt + (terms not involvingwt )

= γ0+ γ1wt + γ2w
2
t ,

where the{γ j } depend ont, zt , and the{β∗j } in the obvious way. Importantly, the log
probability is just a quadratic function inwt . The probability density functionp(xt−1, xt )

for wt , according to the model for the natural process, is Gaussian, with meanφ wt−1 and
standard deviationσw, implying

p(xt−1, xt ) ∝ e(wt−φ wt−1)
2/2σ 2

w .

Upon noting that the score functions(xt−1, xt ) = 0 for all but the final step of the biased
random walk, it follows that the probability density functionq̂S(xt−1, xt ) has the form

q̂S(xt−1, xt ) ∝ p(xt−1, xt )S
∗
β∗(xt ) ∝ e(wt−φwt−1)

2/2σ 2
weγ0+γ1wt+γ2w

2
t ∝ e(wt−µ)2/2σ 2

,

where the parametersµ andσ follow upon collecting terms inwt and depend onφ, wt−1,
σw, and the{γi }. In other words, the vertical velocitywt for the biased random walk
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is distributed as a Gaussian, with mean and standard deviation that depend on the bias-
ing. As such, simulation of the biased random walk for the rare-event example is rela-
tively simple. Oncewt is obtained,zt is derived fromwt as in the model for the natural
process.

Simulation for the plume spread example is only slightly more complicated. In this case,
the probability density function has the form

q̂S(xt−1, xt ) ∝ p(xt−1, xt )S
∗
β∗(xt ) ∝

(
γ0+ γ1wt + γ2w

2
t

)
e(wt−φwt−1)

2/2σ 2
w ,

where the{γi } depend on the parameters{β∗j } as above. Given the simple form of this
probability density function,wt can be simulated by rejection methods (e.g., [9]) using a
mixture of Gaussians as the dominating distribution. The particle heightzt = zt−1+ (wt +
wt−1)/2 is then obtained fromwt just as for the natural process.

In some applications, it is possible that the curve fitting forS̃(xt ) can lead to situations
whereq̂S(xt−1, xt ) ≤ 0 for some values ofxt . When this happens,̂qS(xt−1, xt ) as defined
will: (a) not be a probability density function because of the negative values, or (b) assign
zero importance to a region of positive importance because of the zero values. Either event
destroys the validity of the approach.

If the theoretical quantitỹS(xt ) can be negative (such as for flux), this can be accommo-
dated by using absolute values ofS̃(xt ) in Eq. (5), leading to a low-variance (as opposed to
zero-variance) importance distribution. Negative values ofŜ(xt ) can also occur when many
particle trajectories give a zero score and the fitted curveŜ(xt ) for S̃(xt ) is not positive over
certain regions of the state space. This problem can be overcome by adding a constant to
the fitted curve. Taking Eq. (7), e.g., the fitted curve would be modified as

Ŝ(xt ) =
9∑

j=0

β̂ j bj (xt ) + c,

where the constantc > 0 is chosen to “raise” the fitted curve above zero for all values ofxt

in the state space. Most often, the fitted curve
∑9

j=0 β̂ j bj (x) is already greater than zero
for all statesx, and no such modification is necessary.
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